Original & Accurate copy of AdiChemistry CSIR NET & GATE study material is available only from the Author at www.adichemistry.com

AdiChemistry

SELECTED & IMPORTANT TOPICS STUDY MATERIAL & ONLINE COACHING **2019 Edition** (No of pages: 926)

FOR CSIR UGC NET - GATE - SET EXAMS

By V. Aditya vardhan, Warangal

TO FIND MORE INFORMATION ON OTHER CSIR STUDY MATERIAL & ONLINE COACHING

VISIT http://www.adichemistry.com/common/htmlfiles/csir-gate-chemistry.html

FOR ANSWER KEYS..... GO TO..... http://www.adichemistry.com/csir-net/chemistry/key.html (read only)

To know how to purchase this material, mail me at

adichemadi@gmail.com

TOPICS

#	TOPIC	Page numbers
1	Wade's rules	1 - 12
2	Maxwell's relations	13 - 20
3	Aromaticity	21 - 40
4	Jahn-Teller Theorem	41-51 bom stry
5	Debye -Huckel Theory	52 - 57
6	Strengths of Organic Acids-Bases	58 - 81
7	18 electron rule	82 - 96
8	Larmor equation	97 - 100
9	Specific rotation	101 - 106
10	HSAB Principle	107 - 118
11	Adsorption isotherms - Langmuir theorem	119 - 135
12	Classical Carbocations	136 - 147
4		

	Pre	pared by V. Aditya vardhan -	- mail id: adic	hemadi@gmail.com
	13	F-block	148 - 164	
E	14	EMF - Nernst equation	165 - 178	
ů S	15	Polymers - Molecular weight	179 - 184	7
tr	16	Term symbols	185 - 192	
nis	17	Band theory	193 - 202	8
Jer	18	Trans effect	203 - 209	5
i i	19	Jablonski diagram	210-212	Ğ
ac	20	Kohlrausch law	213-218	9
Ş	21	Rate laws	219-239	
Ş	22	VSEPR theory	240 - 259	
at	23	Miller indices	260 - 268	
p	24	Wilkinson's catalyst	269 - 277	
lut	25	Beer-Lambert's law	278 - 282	
e	26	ESR spectroscopy	283 - 295	
ţ	27	Nuclear chemistry	296 - 310	
E O	28	Beckmann rearrangement	311 - 316	
fr	29	Mossbauer Spectroscopy	317 - 329	
L N	30	Spinels	330 - 335	
0 0	31	Electrical conductance and resistance	336 - 338	
a ble	32	Wittig reaction	339-346	
ailá	33	Reductive eliminations	347-350	
av	34	Claysius-Clayperon equation	351-353	
<u>.</u>	35	Pericyclic reactions - Introduction	354 - 362	
ria	36	Electrocyclic reactions	363 - 368	
ate	37	Cyclo additions	369-376	om
ñ	38	Sigmatropic reactions	377-379	
dy	39	ISOIODAIITY	380-384	
stu	40 41	Pridse Tule Ricinorganic chamistry - Droludo	385-390 201-20E	
Ш	41 12	Homoglobin	391-393	
Ă	42 //2	Hemerythrin	400-401	
ල නේ	чJ ЛЛ	Hemocyanin	402 - 402	
H	45	Cytochromes	403 - 405	
ž	10	oytoeniones		
SIR	46	Iron-Sulfur proteins - Ferredoxin - Rubr	edoxin - Rieske proteins 406 - 408	
С С	47	Metal ions in photosystems	409 - 409	
nistr	48	Carboxypeptidase-Carboxyanhydrase-L	ver alcohol dehydrogenase 410-4	12
Jen	49	Superoxide dismutase SOD	413 - 413	
<u>0</u>	50	Nitrogen fixation	414 - 414	
Ad	51	Copper proteins	415 - 415	
of	52	Siderophores - Ionophores	416 - 416	5
V d	53	Ferritin	417-417 hem	stry E
te co	54	Bioinorganic - Applications & practice of	uestions 418-432	
ura	55	Corey-Chaykovski reaction	433 - 441	
ບິ	56	van der Waals equation	442 - 457	
A	57	Silicates	458 - 463	
al &	58	Aldol reaction	464 - 474	
inå	59	Inner sphere mechanism	475-477, HOO NET O ATE 0 OE	Tohomistry
rig				i cilennistry

	Pre	pared by V. Aditya vardhan -	- mail id: adichemadi@gmail.com
	60	Vaska's complexes - oxidative additions	478 - 481
ε	61	Electro-analytical methods - Polarography	482 - 486
ပ္ပ	62	Amperometry - Coulometry	487 - 487
tv	63	Voltammetry	488 - 489
nis			
Jer	64	Potentiometry + solved & practice questions	s from analytical methods 490-497
<u>i</u>			
/.ac	65	Quantitative analysis - using Dichromate & F	Permanganate 498 - 499
Š	66	Gravimetry - determination of nickel	500 - 501
t ≷	67	lodometry	502 - 504
r a	68	Rotational spectroscopy	505 - 510
Po H	69	Vibrational spectroscopy	511 - 515
A	70	Swern oxidation	516-517
e	71	Hunsdiecker reaction	518-519
t t	72	Birch reduction	520 - 527
L D U O	73	Arndt-Eistert reaction	528 - 530
v fr	74	Bamford-Stevens reaction	531 - 532
Í	/5	Dipole moment	533-535
<u>е</u>	/6	Grignard reagent	536-542
ab	//		543-550
/ail	78 70		
a	79 00	Udidiysis	500-501 542 544
	00 Q1	Wacker evidation	567 571
<u> Prið</u>	82	le Chatelier's Principle	577-582
late	83	Adsorption-Introduction	583 - 587
	84	Slater rules	588 - 591
pn	85	PDC	592 - 594
s	86	Jones reagent	595 - 597
F	87	SeO2	598 - 603
ອ	88	Fetizon's reagent	604 - 605
లర	89	Clemmensen reduction	606 - 607
Щ	90	Finkelstein reaction	608 - 609
2	91	Favoroskii reaction	610-614
S	92	Wolff Kishner reduction	615-616
2	93	Chromatography-introduction-terminology	617 - 624
ist	04	VANDEEMTED equation	405 407
em	94 05	Gas chromatography	628 - 631
<u>i</u>	96	HPLC + chromatography Practice questions	632 - 640
Ad	97	Baever villiger oxidation	641 - 644
of	98	Mannich reaction	645 - 647
Na	99	Rate of reaction	648-652 hem Stry
ပ္ပ	100	Collission theory	653 - 655
ate	101	Factors affecting rate of reaction	656 - 666
ura	102	Rate law + Order + Molecularity	667 - 675
PC C	103	IUPAC nomenclature	676 - 707
8	104	Structural & Geometrical Isomerism	708 - 716
a	105	Inductive effect	717 - 722
gir	, 106	Resonance	723 - 728
ō			

Prepared by V. Aditya vardhan -		- mail id: adichemadi@gmail.com
107 Hyperconjugation	729 - 736	
108 Bonding in metal carbonyls	737 - 743	
109 Cannizzaro reaction	744 - 747	
110 Michael addition	748 - 752	
2 111 MOT solved & practice questions	753 - 758	
112 Reformatsky reaction	759 - 761	
2 113 Friedel crafts alkylation	762 - 765	
114 Inorganic chains, rings & polymers	766 - 772	
115 Williamson's synthesis	773 - 775	
116 MOM	776-777	
117 Metal-Metal bonding	778 - 783	
118 Electrolysis	784 - 794	
119 Solid state - Question Bank (QB)	795 - 816	
120 First law of Thermodynamics (QB)	817 - 820	
121 Enthalpy, heat capacity & Thermochemistry	(QB)	821 - 829
122 Entropy (QB)	830 - 833	
123 Gibb's free energy (QB)	834 - 839	
2 124 Electronic spectra of complexes - Solved qu	uestions	840 - 857
125 NMR Question bank	858 - 866	
126 Hammett equation	867 - 873	
127 Atomic structure solved problems	874 - 898	
128 Boranes	899 - 906	
129 Coordination chemistry solved problems	907 - 926	
www.adicn		STrv.com
Note: More topics will	be added from	m time to time.

SALIENT FEATURES

* Important & selected topics for CSIR NET & GATE as well as other equivalent exams like SET/SLET, TIFR etc. Also useful for UG & PG exams.

* Written in a simple langualge but with very effective tone and helps you in improving your score.

* Most of the topics are provided with illustrated notes as well as worksheets/practice problems.

Note: The length of topics may range from large to small. Some topics are provided with either notes or question bank only. Missing parts will be appended in future updates.

* You can take printouts of this e-book, if you wish to do so, provided you should have purchased this book from the Author, V. Aditya vardhan.

* Online access (read only) to keys to unsolved problems will be given only to those who purchased the book from the author.

* This book is going to be updated again and again with new content. So keep watching.

* Please keep in mind that the topics and material covered in this book (study material) and online coaching modules may not match always. You may consider them to be different. Another major difference is while the study material (this book) can be downloaded wheras the modules in online coaching cannot be..... they should be read online only.

* In general, access to online coaching modules is given to those who purchased this study material for a specific period of time depending on the option chosen.

Copyright & Disclaimer

All rights reserved. No part of this online publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior written permission from the author.

Being a science student, you should use your discretion while using the information given in this book. While every care has been exercised in compiling and publishing the data contained in these pages, the author accepts no responsibility for errors or omissions to the information or any damage caused by reading this book. Author cannot be held liable for typographical errors or other information. The information is not guaranteed to be accurate since the information comes from other sources and therefore may be wholly upreliable.

wholly unreliable.

& GATE stud

NET

Ľ

CS

of AdiChemistry

copv

Accurate

ංඊ

gina

A careful balance between Science and Silence brings peace, happiness and prosperity in our life.

ADICHEMISTRY

1

STUDY MATERIAL & ONLINE COACHING

FOR CSIR NET - GATE - SET EXAMS

through

SELF LEARNING MODULES, VIDEO PRESENTATIONS & GROUP DISCUSSIONS

SELECTED & IMPORTANT TOPICS

WADE-MINGOS RULES (polyhedral skeletal electron pair theory) STUDY MATERIAL

Copyright & Disclaimer

All rights reserved. No part of this online publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior written permission from the author.

Being a science student, you should use your discretion while using the information given in this book/presentation. While every care has been exercised in compiling and publishing the data contained in these pages, the author accepts no responsibility for errors or omissions to the information or any damage caused by reading this book/presentation. Author cannot be held liable for typographical errors or other information. The information is not guaranteed to be accurate since the information comes from other sources and therefore may be wholly unreliable.

Learn Rajayoga meditation to awaken your inner divine powers to lead a successful and happy life.

Visit www.brahmakumaris.com for more information.

WADE-MINGOS RULES

Wade-Mingo's rules can be applied to clusters like boranes and carboranes that have same deltahedral geometry. The polyhedra with triangular faces are usually referred to as deltahedra. The type and structure of boranes and carboranes can be derived as follows:

Step-1:

the Author at www.adichemistrv.com

from

>

0

is available

E study material

CSIR NET & GAT

Accurate copy of AdiChemistry

inal &

First, the number of skeletal electrons are calculated as sum of the following contributions.

- * Each B-H contributes 2.
- * Each C-H contributes 3.
- * Each additional hydrogen contributes 1.
- * Finally the anionic charge on the cluster is to be added to above contributions.

i.e., Skeletal Electron Count (SE)= 2(B-H) + 3(C-H) + 1(addtl.H) + anionic charge on cluster

Step-2:

Now calculate the number of pairs of electrons (MO's).

No. of Skeletal Electron Pairs (SEP) = $\frac{\text{Skeletal Electron count (SE)}}{2}$

Step-3:

Let the number of vertices (no. of B & C atoms) is given by 'n'. Then by comparing the number of electron pairs with number of vertices (n), the cluster's structure can be derived as follows:

For CSIR UGC NET - GATE & SET chemistry

2

No. of Skeletal Electron Pairs(SEP)	Type of Borane
n+1	Closo
n+2	Nido
n+3	Arachno
	Hypho
n+5	Clado

Note: 'n' is the number of vertices.

ILLUSTRATIONS

1) B₇H₇²⁻, Heptahydroheptaborate(2-)

step-1: skeletal electron count = 2(B-H) + 3(C-H) + 1(addtl.H) + anionic charge on cluster= 2(7) + 0 + 0 + 2 = 16

step-2: no. of electron pairs = $\frac{\text{skeletal electron count}}{2} = \frac{16}{2} = 8$

step-3: The no. of vertices = n = 7

no. of electron pairs = 8, which corresponds to n+1.

Hence it is a closo borane (no vetex is missing).

* As no vertex is missing, the cage structure should contain n=7 vertices and is pentagonal bipyramidal

2) B₆H₁₀ - Hexaborane(10)

Original & Accurate copy of AdiChemistry CSIR NET & GATE study material is available only from the Author at www.adichemistry.com

step-1: skeletal electron count = 2(B-H) + 3(C-H) + 1(addtl.H) + anionic charge on cluster= 2(6) + 0 + 4 + 0 = 16

step-2: no. of electron pairs = $\frac{\text{skeletal electron count}}{2} = \frac{16}{2} = 8$

step-3: The no. of vertices = n = 6

no. of electron pairs = 8, which corresponds to n+2.

Hence it is a nido borane (one vertex is missing)

* As only one vertex is missing, the parent cage must contain n+1=7 vertices. Hence the structure of B_6H_{10} must be pentagonal bipyramidal with one vertex missing (you can call it as pentagonal pyramid with 6 vertices)

3) **B**₅**H**₁₁ - **Pentaborane**(11)

step-1: skeletal electron count = 2(B-H) + 3(C-H) + 1(addtl.H) + anionic charge on cluster= 2(5) + 0 + 6 + 0 = 16

step-2: no. of electron pairs = $\frac{\text{skeletal electron count}}{2} = \frac{16}{2} = 8$

step-3: The no. of vertices = n = 5
no. of electron pairs = 8, which corresponds to n+3.
Hence it is an arachno borane (two vertices are missing).

* The parent cage must contain n+2=11 vertices, which corresponds to edge-contracted icosahedron (octadecahedron). Hence the cage structure of $C_2B_7H_{13}$ is edge-contracted icosahedron (octadecahedron) with two vertices missing.

THEORY BEHIND WADE-MINGO'S RULES

NET

Ľ

<u>CS</u>

Original & Accurate copy of AdiChemistry

* The number of valence electrons in boron is 3. Among them, one electron is contributed for B-H bond at the vertex. The remaining 2 electrons are invoved in skeletal bonds formation and are termed as skeletal electrons (SE's). That is why contribution of each B-H to skeletal electrons is 2. Likewise, carbon contributes 3 electrons to the skeleton.

* A closo-deltahedral cluster cage with 'n' vertices requires (n+1) skeletal electron pairs (SEP's) which occupy (n+1) cluster bonding MOs ; It also implies, the skeletal electrons (SE's) must be equal to 2n+2. (i.e. n vertices require 2n+2 electrons in closo cluster)

* Likewise, a nido-deltahedral cluster cage with 'n' vertices requires (n+2) pairs of electrons and so on.

Note: Here the value of 'n' represents the actual number of vertices in the cluster (or the number of boron as well as carbon atoms). According to some textbooks, 'n' represents the number of vertices in the parent closo cluster.

	Prepared by V. Aditya vardhan - 4 - mail id: adichemadi@gmail.coi	m
	APPLICATION TO CLUSTERS OF MAIN GROUP	
Ε	* Wade's rules may be applied to naked clusters formed by p-block elements by assuming each	ch
မပ္ပ	atom contains a localized non-bonding lone pair.	
Ş		
<u>lisi</u>	Examples:	
len Len	1) In $[Pb_5]^{2-}$, the no. of valence electrons + charge = 5(4) + 2 = 22.	
<u>i</u>	Among them, $5 \ge 2 = 10$ electrons are in lone pairs.	
ac	Hence the number of SEs = $22 - 10 = 12$	
\geq	Now the number of SEPs = $12/2 = 6$	
Ş	As no. of SEPs corresponds to $n+1 = 5+1 = 6$, $[Pb_{5}]^{2}$ must have 'closo' structure. (Here the no	0 .

of Pb atoms = 5)

2) In P_4 molecule, the no. of valence electrons + negative charge = 4(5) + 0 = 20

Among them, 8 electrons are in lone pairs.

Hence the no. of SEs = 20 - 8 = 12

Now the no. of SEPs = 12/2 = 6

As the no. of SEPs corresponds to n+2 = 4 + 2 = 6, P_4 must have '*nido*' structure.

It is a beautiful experience to read any science book with a complete positive attitude that "I can understand anything".

Updates & keys with explanation are only available to those who purchased this material from the Author at www.adichemistry.com

CLUSTER VALENCE ELECTRON THEORY
This is a second method for determining the geometry of a cluster. It is more comprehensive and
works for all boranes as well as related carboranes
To use this method, the total number of valence electrons used in cluster bonding must be deter-
mined
* Boron contributes 3 valence electrons
* Carbon contributes 4 valence electrons
* Hydrogen contributes 1 valence electron
* The total negative charge must be added to above contributions
The structure is determined according to the following equations:
close $ An \pm 2$ valence electrons
nido _ $An \pm A$ valence electrons
arachno - $4n + 6$ valence electrons
Hypho $4n + 8$ valence electrons
$\frac{11}{100} = -411 + 3 \text{ value clections}$ where $n = \text{number of boron stores in the cluster}$
where ii – number of boron atoms in the cluster
Example:
1) $B_7 H_7^{2^\circ}$, Heptahydrohepataborate(2-) $4n = 4 \times 7 = 28$ Total no. of valence electrons = 7(3) + 7(1) + 2 = 30 Since there are 4n+2 electrons (30 = 28 + 2), it must be a closo borane.
APPLICATION TO CLUSTERS OF TRANSITION ELEMENTS This approach is also be used for transition metal clusters. First, the total number of valence electrons used in the skeleton of the cluster formation is calculated as follows: * Each monodentate ligand contributes 2 electrons. * Metal contributes its (n-1)d and ns electrons. * Finally any pagative charge on the cluster must be added
* Finally any negative charge on the cluster must be added.

5

The structure is determined according to the following equations:

14n + 2 valence electrons closo -

nido -14n + 4 valence electrons

arachno - 14n + 6 valence electrons

Hypho -14n + 8 valence electrons

where n = number of vertices or metal atoms in the cluster.

Original & Accurate copy of AdiChemistry CSIR NET & GATE study material is available only from the Author at www.adichemistry.com

1) $\frac{\mathbf{Rh}_{6}(\mathbf{CO})_{16}}{14n = 14 \text{ x } 6 = 84}$

Prepared by V. Aditva vardhar

Rh belongs to group 9. Hence the # valence electrons in it is 9 (both d and s electrons) Total valence electron count = 6(9) + 16(2) = 86.

There are 4n+2 = 84 + 2 valence electrons and hence a 'closo' cluster.

Prepared by V. Aditya vardhan

Updates & keys with explanation are only available to those who purchased this material from the Author at www.adichemistry.com

Hence it is a nido borane (one vertex is missing)

For [B₂H₆]

skeletal electron count = 2(B-H) + 3(C-H) + 1(addtl.H) + anionic charge on cluster= 2(2) + 3(0) + 1(4) + 1(0) = 8

8

no. of skeletal electron pairs = 8/2 = 4

The no. of vertices = n = 2no. of electron pairs = 4, which corresponds to n+2. Hence it is a nido borane (one vertex is missing)

For [B₆H₁₂]

skeletal electron count = 2(B-H) + 3(C-H) + 1(addtl.H) + anionic charge on cluster= 2(6) + 3(0) + 1(6) + 1(0) = 18

no. of skeletal electron pairs = 18/2 = 9

The no. of vertices = n = 6no. of electron pairs = 9, which corresponds to n+3. Hence it is an arachno borane (two vertices are missing)

www.adichemistry.com

CSIR NET & GATE study materials are available at http://www.adichemistry.com/common/htmlfiles/csir-gate-chemistry.html

	Prepared by V. Aditya vardhan -	10	- mail id: adichemadi@gmail.com
	9) According to Wade's theory the ar	nion $[B_{12}H_{12}]^{2-}$ adopts	(CSIR NET JUNE 2015)
Ξ	1) closo-structure 2) arachno-stru	ucture 3) hypo-structure	4) nido-structure
5.			
	10) Total number of vertices in metal	clusters $[Ru_6(C)(CO)_{17}],$	$[Os_5(C)(CO)_{15}]$ and $[Ru_5(C)(CO)_{16}]$
E C	are 6, 5 and 5, respectively. The pred	icted structures of these c	complexes, respectively, are:
b	1) Close ride and ride	2) Class nide and areah	(CSIR NET JUNE 2015)
S N	3) Arachno, closo and nido	4) Arachno nido and clo	
2	5) Machino, closo and mao	+) / Hacimo, indo and cio	
đ			
2	11) According to Wade's rules, the	correct structural types	of $[Co(\eta^5-C_{\epsilon}H_{\epsilon})B_{\mu}H_{\sigma}]$ and $[Mn(\eta^2-$
n	$B_3H_8)(CO)_4$] are:		(CSIR NET DEC 2016)
L 1)	1) closo and nido	2) nido and arach	no
5	3) closo and arachno	4) nido and nido	2
5			
Ę			
Ì	12) According to Wade's rules, the cl	luster type and geometry	of $[Sn_g]^+$, respectively, are
D	1) close and tricapped trigonal pris	matic	(CSIR NET DEC 2017)
aD	2) filed and monocapped square-ar	ndel	
٨đ	4) close and monocapped square a	ntiprismatic	5
ס 0	+) close and monocapped square a	http://sindete	
5			
Ð	13) According to Wade's rule, the str	ructures of $B_{10}C_2H_{12}$ and [$B_0C_2H_{11}$ ²⁻ , respectively, are:
ם	A) closo and arachno	B) nido and $closo$ (K	KERALA SET 2013) (GATE 2004)
2	C) closo and nido	D) nido and arachno	
			4
<i>и</i>			
Z	(A) Nido	(\mathbf{P}) A reaching	cluster $[Fe_4C(CO)_{12}]^2$ is:
ע ז	(A) Nido (C) Close	(D) Alacinio (D) Octabedral	(KARINAIAKA SLEI 2014)
	(C) Closo	(D) Octaneural	
Z			
	15) Based on Wade's rules of electron	n counting, structure of ca	arborane, $CB_{e}H_{14}$, is expected to be:
د	[A] closo	[B] nido	(UOHYD MSC 2015)
	[C] arachno	[D] galacto	
Ę		(D H	
þ	(A) along wades rule predict the structure (\mathbf{A}) along (\mathbf{B}) ride	ucture of $\mathbf{B}_{9}\mathbf{H}_{14}^{-1}$.	(UOHYD PHD 2010)
1	(A) closo (B) fildo	(C) aracino	(D) scorpionato
			hem strv
25	17) Using Wade's rule predict the stru	ucture of Os ₂ (CO).	
Ľ	(A) square pyramid	(B) trigon	hal bipyramid
מ	(C) capped tetrahedron	(D) butter	rfly shaped
2			
ð			
۵	18) The cluster having arachano type	structure is:	(CSIR NET JUNE 2012)
S	A) $[\operatorname{Ir}_4(\operatorname{CO})_{12}]$ B) [Os	$_{3}(CO)_{12}$] C) $[Os_{5}(CO)_{12}]$	$[CO]_{16}$ D) $[Rh_6(CO)_{16}]$
5			

	Prepared by V. Aditya vardhan -		11	-	mail id: adichemadi@gmail.com	
simsury.com	19) The predicted structure of SB ₉ H A) Closo B) Nido	₁₁ , accord	ing to Wade's C) Arachno	rules is:	: D) Klado	o podios o
at www.auiche	20) Structure of a carborane with forA) Closo-boraneC) Arachno-borane	rmula, C_2 B) Nido D) Conj	B ₄ H ₈ is formal -borane uncto-borane	lly deriv	ved from: (CSIR NET DEC 2012)	neys with ex
	21) The total valence electron count respectively, are:1) 74 & nido2) 60 & closo	and the st	tructure type a	adopted 10	by the complex [Fe ₅ (CO) ₁₅ C] (CSIR NET JUNE 2014) 4) 84 & nido	
IIIable UIIIy II UI	 22) Addition of two electrons to the I 1) closo to nido 3) closo to arachno 		luster Bi ₅ ³⁺ res 3) nido to arac 4) arachno to h	ults in a hno nypho	change of structure type from: (CSIR NET JUNE 2017)	
IIALEI IAI IN AVA	23) An example of nido-borane from (A) B_4H_{10} (B) B_6H_{10}	the follo (wing is: C) B_6H_{12}		(GATE 2014) (D) B ₈ H ₁₄	
AIE Study I	24) According to polyhedral electron (A) closo (B) nido	count ru (le, the structur C) arachno	re of Rh	n ₆ (CO) ₁₆ is: (GATE 2013) (D) hypho	
	 25) The correct classification of [B₅I a) closo, arachno, nido c) closo, nido, arachno 	H ₅] ^{2−} , B ₅ H t c	B_{3} and $B_{5}H_{11}$ re b) arachno, clo l) nido, arachr	espectivo oso, nido no, closo	ely is: (GATE 2007)	
vo kineiiiiaii	26) Which of the following has a nid A) $Ir_4(CO)_{12}$ B) $Fe_4(CO)_{15}$	o structu (re? C) Os ₅ (CO) ₁₆		(KERALA SET JUNE 2016) D) Rh ₆ (CO) ₁₆	
hink in Kdon	 27) The carborane C₂B₄H₆ has the str A) Closo – tetrahedron C) Closo – octahedron 	ructure: H I	3) Nido – trig D) Arachno - i	onalbip cosahec	(KERALA SET FEB 2017) yramid lron	
& Accurate	 28) Identify the following boranes w (a) closo (b) nido (c) arachno 	ith their c (i) B_6H_{12} (ii) (B_6H_{13}) (iii) B_6H_{13}	class of borane ${\bf I}_{6}^{2}$, ${\bf I}_{10}^{2}$	es : (MAHA	ARASHTRA SET FEB 2013)	
Originan	(A) (a)—(ii), (b)—(i), (c)—(ii) (B) (a)—(i), (b)—(iii), (c)—(ii) (C) (a)—(ii), (b)—(i), (c)—(iii)					y.com

	Prepared by V. Aditya vardhan -	12	- mail id: adichemadi@gmail.com
	(D) (a)—(ii), (b)—(iii), (c)—(i)		
Eo			l l l l l l l l l l l l l l l l l l l
х. С			
str	20) Find out the correct statement(α):		(TDD 2017)
m	 29) Find out the correct statement(s): (A) December and (14) is considered as P. H. 	[icoschodro t	(IKB 2017)
e Pe	(A) Decadorate (14) is considered as B_{12} here removed	Γ_{12} icosaneura i	frame work from which br and bo have
adi	(B) Hexaborane(10) is not a pentagonal p	rism	
Ň	(C) Icosahedron of [B.H.] ²⁻ is merely the	e upper limit o	f a series of deltahedra [B H] ²⁻
Š	(D) If all the vertices of deltahedron are o	ccupied the str	cucture is called nido
at	Codes:	1	
<u>S</u>	(a) B and D (b) A and C	(c) B and C	C (d) D only
nt			
е Ф			
Ę	30) Using total valence electron countir	ng and polyhe	dral electron counting, the structures of
B	$Os_5(CO)_{16}$ and $Os_5(CO)_{15}C$, respectively as	re:	(UOHYD PHD)
Y fr			
	(A) Closo and nido	(B) Closo a	and arachno
<u>ه</u>	(C) Nido and aracino	(D) Nido a	nd closo
ab	31) The number of 'framework electron n	airs' present h	prane cluster [B H 1^{2-} is: (GATE 2010)
vai	a) 10 b) 11	c) 12	d) 13
s a		0) 12	u) 15
a a	32) The numbers of skeletal electrons pres	sent in the con	pounds $C_B_H_2$, $C_B_H_3$, and B_H_3 are,
eri	respectively,		(CSIR NET JUNE 2016)
nat	1) 10, 12 and 12	2) 12, 14 a	nd 14
<u>></u>	3) 10, 12 and 14	4) 12, 14 a	nd 12
tuo			
S Ш	33) The number of bonding molecular ort	pitals and the r	number of available skeletal electrons in
AT	$[\mathbf{B}_{6}\mathbf{H}_{6}]^{2}$, respectively, are:	2) 10 11	(CSIR NET JUNE 2017)
ය දු	1) / and 14 2) 6 and 12	3) 18 and 1	.2 4) 11 and 14
Z	Keys/Solutions along with	extra problem	s (updates) are available at
SIR	http://www.adichemist	ry.com/csir-	net/chemistry/key.html
ິ <u>ບ</u>			
ïry			
nis			
he			
Ă			
ō			
do			nem Estry
ပ မ			
rat			
C U			
Ac			
త			
na			
rig			KUGU NEI – GATE & SET CNEMISTRY
0			

Prepared by V. Aditya vardhan

the Author at www.adichemistry.com

from

>

Original & Accurate copy of AdiChemistry CSIR NET & GATE study material is available only

ADICHEMISTRY STUDY MATERIAL & ONLINE COACHING FOR CSIR NET - GATE - SET EXAMS

through

SELF LEARNING MODULES, VIDEO PRESENTATIONS & GROUP DISCUSSIONS

SELECTED TOPICS

MAXWELL'S RELATIONS

Copyright & Disclaimer

All rights reserved. No part of this online publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior written permission from the author.

Being a science student, you should use your discretion while using the information given in this book/presentation. While every care has been exercised in compiling and publishing the data contained in these pages, the author accepts no responsibility for errors or omissions to the information or any damage caused by reading this book/presentation. Author cannot be held liable for typographical errors or other information. The information is not guaranteed to be accurate since the information comes from other sources and therefore may be wholly unreliable.

Learn Rajayoga meditation to awaken your inner divine powers to lead a successful and happy life. Visit www.brahmakumaris.com for more information.

MAXWELL'S RELATIONS

Following are the four important Maxwell's relations derived from the corresponding thermodynamic equations.

Thermodynamic equationsMaxwell's relationsdU = TdS - PdV \Rightarrow $\left(\frac{\delta T}{\delta V}\right)_{S} = -\left(\frac{\delta P}{\delta S}\right)_{V}$ dF = -SdT - PdV \Rightarrow $\left(\frac{\delta S}{\delta V}\right)_{T} = \left(\frac{\delta P}{\delta T}\right)_{V}$ dH = TdS + VdP \Rightarrow $\left(\frac{\delta T}{\delta P}\right)_{S} = \left(\frac{\delta V}{\delta S}\right)_{P}$ dG = -SdT + VdP \Rightarrow $-\left(\frac{\delta S}{\delta P}\right)_{T} = \left(\frac{\delta V}{\delta T}\right)_{P}$

Updates & keys with explanation are only available to those who purchased this material from the Author at www.adichemistry.com

For CSIR UGC NET - GATE & SET chemistry

Euler's reciprocity relation

Let 'f' is a thermodynamic state function that depends on natural variables like x_1 and x_2 , then mathematically we can express this as:

i.e.
$$f = f(x_1, x_2)$$

Since a state function is an exact differential, we can also write,

$$df = \left(\frac{\partial f}{\partial x_1}\right)_{x_2} dx_1 + \left(\frac{\partial f}{\partial x_2}\right)_{x_1} dx_2$$

Let,

Original & Accurate copy of AdiChemistry CSIR NET & GATE study material is available only from the Author at www.adichemistry.com

$$y_1 = \left(\frac{\partial f}{\partial x_1}\right)_{x_2}$$
 & $y_2 = \left(\frac{\partial f}{\partial x_2}\right)_{x_1}$

We can rewrite the equation as:

$$df = y_1 dx_1 + y_2 dx_2$$
 ------ (1)

For above two dimensional function, according to Euler's reciprocity relation, we can write:

$$\left(\frac{\delta y_1}{\delta x_2}\right)_{x_1} = \left(\frac{\delta y_2}{\delta x_1}\right)_{x_2}$$

Above is true only when 'f' is an exact differential (i.e. state function).

www.adichemistry.con

For CSIR UGC NET - GATE & SET chemistry

DERIVATION OF MAXWELL'S RELATIONS

1st Maxwell's relation

Let us consider the first thermodynamic equation for a state function, U (internal energy) which depends on two natural variables S and V, i.e.

dU = TdS - PdV

$$df = y_1 dx_1 + y_2 dx_2$$

Then by applying Euler's relation, we can write:

$$\left(\frac{\delta T}{\delta V}\right)_{S} = -\left(\frac{\delta P}{\delta S}\right)_{V}$$

It is first Maxwell's relation.

For a clear understanding, I am writing the relations once again.

$df = y_1 dx_1 + y_2 dx_2$	lity	$\left(\frac{\delta y_1}{\delta x_2}\right)_{x_1} = \left(\frac{\delta y_2}{\delta x_1}\right)_{x_2}$
dU = TdS - PdV	\Rightarrow	$\left(\frac{\delta T}{\delta V}\right)_{S} = -\left(\frac{\delta P}{\delta S}\right)_{V}$

Extra information

Original & Accurate copy of AdiChemistry CSIR NET & GATE study material is available only from the Author at www.adichemistry.com

$$y_1 = \left(\frac{\partial f}{\partial x_1}\right)_{x_2}$$
 & & $y_2 = \left(\frac{\partial f}{\partial x_2}\right)_{x_1}$

We can also write:

$$T = \left(\frac{\partial U}{\partial S}\right)_V \qquad \& \qquad P = -\left(\frac{\partial U}{\partial V}\right)_S$$

For CSIR UGC NET • GATE & SET chemist

Prepared by V. Aditya vardhan

Note: However, above two relations are NOT Maxwell's relations.

2nd Maxwell's relation

Now consider the equation for Helmholtz free energy, F. It is also a state function that can be expressed in terms of natural variables T and V.

$$dF = -SdT - PdV$$

Then by applying Euler's relation, we can write:

$$\left(\frac{\delta S}{\delta V}\right)_T = \left(\frac{\delta P}{\delta T}\right)_V$$

It is the second Maxwell's relation. For a clear understanding.....

$$df = y_1 dx_1 + y_2 dx_2 \qquad \Rightarrow \qquad \left(\frac{\delta y_1}{\delta x_2}\right)_{x_1} = \left(\frac{\delta y_2}{\delta x_1}\right)_{x_2}$$

$$dF = -SdT - PdV \implies \left(\frac{\delta S}{\delta V}\right)_T = \left(\frac{\delta P}{\delta T}\right)_V$$

Extra information Since

> $y_2 = \left(\frac{\partial f}{\partial x_2}\right)_{x_1}$ & $y_1 =$

we can also write:

Original & Accurate copy of AdiChemistry CSIR NET & GATE study material is available only from the <u>Author at www.adichemistry.com</u>

$$S = -\left(\frac{\partial F}{\partial T}\right)_V$$
 & $P = -\left(\frac{\partial F}{\partial V}\right)_T$

Note: Again, above two relations are NOT Maxwell's relations.

3rd Maxwell's relation

From the following equation for another state function, H (enthalpy) expressed in two natural variables S and P;

$$dH = TdS + VdP$$

We can write the third Maxwell's relation

$$\left(\frac{\delta T}{\delta P}\right)_{S} = \left(\frac{\delta V}{\delta S}\right)_{P}$$

Compare and justify yourself.

$$df = y_1 dx_1 + y_2 dx_2 \qquad \Rightarrow \qquad \left(\frac{\delta y_1}{\delta x_2}\right)_{x_1} = \left(\frac{\delta y_2}{\delta x_1}\right)_{x_2}$$
$$dH = T dS + V dP \qquad \Rightarrow \qquad \left(\frac{\delta T}{\delta P}\right)_{x_1} = \left(\frac{\delta V}{\delta S}\right)_{x_2}$$

Extra information

Original & Accurate copy of AdiChemistry CSIR NET & GATE study material is available only from the Author at www.adichemistry.com

We can also write:

$$T = \left(\frac{\partial H}{\partial S}\right)_P \qquad \& \qquad V = \left(\frac{\partial H}{\partial P}\right)_S$$

www.adichemistry.com

For CSIR UGC NET - GATE & SET chemistry

4th Maxwell's relation

The thermodynamic relation for Gibbs free energy, G can be expressed using two natural variables T and P;

$$dG = -SdT + VdP$$

By applying Euler's relation, we can write the following Maxwell's relation

$$-\left(\frac{\delta S}{\delta P}\right)_T = \left(\frac{\delta V}{\delta T}\right)_P$$

Compare and justify yourself.

$$df = y_1 dx_1 + y_2 dx_2 \qquad \Rightarrow \qquad \left(\frac{\delta y_1}{\delta x_2}\right)_{x_1} = \left(\frac{\delta y_2}{\delta x_1}\right)_{x_2}$$
$$dG = -SdT + VdP \qquad \Rightarrow \qquad -\left(\frac{\delta S}{\delta P}\right)_T = \left(\frac{\delta V}{\delta T}\right)_P$$

Extra information

Original & Accurate copy of AdiChemistry CSIR NET & GATE study material is available only from the <u>Author at www.adichemistry.com</u>

We can also write:

$$S = -\left(\frac{\partial G}{\partial T}\right)_P$$
 & & $V = \left(\frac{\partial G}{\partial P}\right)_P$

"Worrying is a waste of time. It does not change anything. It messes with your mind and steals your happines."

CSIR NET & GATE STUDY MATERIALS IN CHEMICAL SCIENCES ARE AVAILABLE AT http://www.adichemistry.com

Updates & keys with explanation are only available to those who purchased this material from the Author at www.adichemistry.com

Original & Accurate copy of AdiChemistry CSIR NET & GATE study material is available only from the Author at www.adichemistry.com

20

i) $\left(\frac{\delta T}{\delta P}\right)_{s} = \left(\frac{\delta V}{\delta S}\right)_{p}$ A) dU = TdS - PdV*ii*) $-\left(\frac{\delta S}{\delta P}\right)_{T} = \left(\frac{\delta V}{\delta T}\right)_{T}$ B) dH = TdS + VdP $iii) \left(\frac{\delta T}{\delta V}\right)_{c} = -\left(\frac{\delta P}{\delta S}\right)_{v}$ C) dF = -SdT - PdV $iv\left(\frac{\delta S}{\delta V}\right)_{T} = \left(\frac{\delta P}{\delta T}\right)_{U}$ D) dG = -SdT + VdP(A) **(B)** (C) (D) 1) (iii) (i) (iv) (ii) 2) (iv) (i) (iii) (ii) 3) (iii) (i) (iv) (ii) 4) (ii) (iii) (iv) (i) 6) In one of the Maxwell's relations, $\left(\frac{\delta S}{\delta P}\right)_{r}$ equals to: (TAMILNADU SET 2017) 1) $\left(\frac{\delta V}{\delta T}\right)_P$ 2) $\left(\frac{\delta V}{\delta T}\right)_V$ 3) $-\left(\frac{\delta V}{\delta T}\right)_P$ 4) $\left(\frac{\delta P}{\delta T}\right)_V$ 7) Using the fundamental equation dF = -SdT - PdV, the Maxwell relation is: 1) $\left(\frac{\delta T}{\delta P}\right)_{r} = \left(\frac{\delta V}{\delta S}\right)_{r}$ 2) $-\left(\frac{\delta S}{\delta P}\right)_{T} = \left(\frac{\delta V}{\delta T}\right)_{r}$ $3) \left(\frac{\delta T}{\delta V}\right)_{c} = -\left(\frac{\delta P}{\delta S}\right)_{V} \qquad 4) \left(\frac{\delta S}{\delta V}\right)_{T} = \left(\frac{\delta P}{\delta T}\right)_{V}$ 8) The Maxwell's relation $\left(\frac{\delta S}{\delta V}\right)_T = \left(\frac{\delta P}{\delta T}\right)_V$ results from: (UOHYD PHD 2017) A) dU = dQ - dWB) dH = dU + PdV + VdPC) dA = dU - TdS - SdTD) dG = dH - TdS - SdTKeys/Solutions along with extra problems (updates) are available at

Keys/Solutions along with extra problems (updates) are available at http://www.adichemistry.com/csir-net/chemistry/key.html

FUI GAIR UAG NET "GATE à DET GIGIIIAI

Author at www.adichemistry.com

the

from

>

<u>E study material is available onl</u>

GAT

٥ð

CSIR

of AdiChemistry

Accurate copy

ø

Pa Pa DICHEMISTRY

STUDY MATERIAL & ONLINE COACHING

FOR CSIR NET - GATE - SET EXAMS

through

SELF LEARNING MODULES, VIDEO PRESENTATIONS & GROUPDISCUSSIONS

SELECTED & IMPORTANT TOPICS

AROMATICITY STUDY MATERIAL

Copyright & Disclaimer

All rights reserved. No part of this online publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, without the prior written permission from the author.

Being a science student, you should use your discretion while using the information given in this book/presentation. While every care has been exercised in compiling and publishing the data contained in these pages, the author accepts no responsibility for errors or omissions to the information or any damage caused by reading this book/presentation. Author cannot be held liable for typographical errors or other information. The information is not guaranteed to be accurate since the information comes from other sources and therefore may be wholly unreliable.

Learn Rajayoga meditation to awaken your inner divine powers to lead a successful and happy life. Visit www.brahmakumaris.com for more information.

WHAT IS AROMATICITY?

Aromaticity refers to unexpected high stability and resistance to electrophilic addition reactions shown by a few cyclic unsaturated compounds. They undergo electrophilic substitution rather than addition.

Benzene is the best example. It does not undergo addition reactions. For example, with Br_2 , no addition will take place. However, it forms an electrophilic substitution product, bromobenzene with Br_2 in presence of Lewi's acid.

The compounds can be divided into aromatic, anti aromatic and non aromatic based on following characteristics. Let us have a bird eye view first followed by illustrations.

AROMATIC COMPOUNDS

i) The molecule must be **cyclic and planar** (more or less).

ii) According to **Huckel's rule**, there should be $(4n+2)\pi$ electrons that can be delocalized along the periphery of the ring in a closed loop.

* The π -electrons may be π -bonding electrons or lone pairs in the orbitals perpendicular to the aromatic ring system.

* The carbons or heteroatoms that are part of aromatic ring system must be sp² or sp hybridized. Any sp³ hybridized atom in the middle breaks the closed loop.

iv) Aromatic compounds are **diamagnetic** since they contain paired electrons in the molecular orbitals. * In a strong magnetic field, a diamagnetic ring current or diatropic ring current is produced by the π -electrons of the aromatic ring that creates its own magnetic field. As a result, the protons outside the aromatic ring are deshielded and appear at down field in H¹-NMR spectrum. The protons inside the aromatic ring are shielded and appear at up field.

For CSIR UGC NET - GATE & SET chemistr

v) These are highly stable compounds with extremely high resonance energy values.

Note:

is available only from the Author at www.adichemistry.com

* Strictly speaking, Huckel's rule was proposed for monocyclic compounds only. However, we can extend the idea to other systems too.

Huckel's numbers: Since 'n' can have values 0,1,2,3,...., the cyclic planar system with 2, 6, 10, 14, 18.... delocalized π electrons (in a cyclic manner) is said to be aromatic.

ANTI-AROMATIC COMPOUNDS

i) The molecule must be **cyclic and planar** (more or less).

ii) There should be $4n\pi$ electrons that would be delocalized along the periphery of the ring in a closed loop.

* These molecules also contain continuous atoms which are sp² or sp hybridized.

iii) These are **paramagnetic** since there are unpaired electrons in the MO's.

* Due to paramagnetic or paratropic ring current the protons outside the anti-aromatic ring are shielded and appear at up field, whereas those inside the ring appear at down field.

iv) These are highly unstable systems.

Note: Thus the cyclic planar system with 4, 8, 12, 16.... delocalized π electrons is said to be antiaromatic.

NON-AROMATIC COMPOUNDS

i) They may contain $(4n+2)\pi$ or $4n\pi$ electrons which may or may not be in conjugation. These π electrons may or may not be in a closed loop.

ii) They may be cyclic or non-cyclic.

ii) However, these are **non planar** and hence neither aromatic nor anti-aromatic.

iii) These are moderately stable.

Note: Any molecule that is neither aromatic nor anti-aromatic is said to be non-aromatic.

riginal & Accurate copy of AdiChemistry CSIR NET & GATE study material **ILLUSTRATIONS** "The more storage you have, the more stuff you accumulate. 1) Benzene Cyclic & Planar 6π electrons (A Huckel number) Aromatic

12) Dianion of COT

Non-aromatic (flexibility to exists in non planar shape)

Its dianion is aromatic and stable.

21) [16]-Annulene - Just like [12]-annulene, it is also non-aromatic instead of anti-aromatic.

is available only from the Author at www.adichemistry.com

studv material

ш

GAT

<u>مې</u>

Original & Accurate copy of AdiChemistry CSIR NET

The peripheral protons show downfield shifts whereas the inner hydrogens on N atoms appear at upfields in ¹H-NMR spectrum.

"To live on a day-to-day basis is insufficient for human beings; we need to transcend, transport and escape"

HOMOAROMATICITY

Homoaromaticity is a special case of aromaticity. It refers to formation of a closed loop of delocalized $(4n+2)\pi$ electrons by bypassing one or more saturated atoms (sp³hybridized) in a ring.

In these systems, the sp³ atoms interrupt the continuous overlap of p-orbitals that rules out aromaticity. However, these molecules/ions show considerable thermodynamic stability since they maintain continuous overlap of p-orbitals in a closed loop by avoiding saturated atoms.

ILLUSTRATIONS

1) Homotropylium cation is homoaromatic. It has one sp³ hybrid carbon that interrupts continuous overlapping of p-orbitals. However, this atom is bypassed and a continuous ring of 6π -electrons is formed that gives aromatic nature to this ion.

2) bicyclo[3.1.0] hexyl cation (or) tris-homocyclopropenyl cation

In this ion, the aromatic ring with 2π electrons is bypassing three sp³ carbons.

Note: The ionic aromatic compounds are also termed as quasi-aromatic compounds.

PRACTICE QUESTIONS

30

Keys/Solutions along with extra problems (updates) are available at http://www.adichemistry.com/csir-net/chemistry/key.html

1) Among the carbocations given below:

iginal & Accurate copy of AdiChemistry CSIR NET & GATE study material is available only from the Author at www.adichemistry.com

(CSIR NET JUNE 2011) (CHATTISGARH SET 2016)

5) A is antiaronnatic, B is aronnatic and C is narmoaronnatic

4) A is homoaromatic, B is aromatic and C is antiaromatic.

2) Amongst the following, the compound which has the lowest energy barrier for the cis-trans isomerisation is: (CSIR NET DEC 2013)

3) Though cyclobutadiene (C_4H_4) is highly unstable and readily polymerizes in its free state, its transition metal complexes could be isolated because: (CSIR NET JUN 2013)

1) it engages in long-range interaction with transition metals.

2) it gains stability due to formation of $C_4 H_4^2$ on binding to transition metals.

3) its polymerization ability reduces in presence of transition metal.

3)

4) it becomes stable in presence of transition metals due to formation of $C_{a}H_{a}^{2+}$.

4) The compound that is anti aromatic is:

1)

(CSIR NET DEC 2014)

is available only from the Author at www.adichemistry.com

Explanation: Electron withdrawing groups decrease the electron density on the ring. However, in the first one the N atom is in one ring can donate electron pair and hence is more reactive towards electrophiles.

8) Correct match for the products of the reactions in Column A with the properties in Column B is:

Jpdates & keys with explanation are only available to those who purchased this material from the Author at www.adichemistry.com

Updates & keys with explanation are only available to those who purchased this material from the Author at www.adichemistry.com

37

